Efecto Meissner

Efecto Meissner, también denominado efecto Meissner-Ochsenfeld, consiste en la desaparición total del flujo del campo magnético en el interior de un material superconductor por debajo de su temperatura crítica. Fue descubierto por Walter Meissner y Robert Ochsenfeld en 1933 midiendo la distribución de flujo en el exterior de muestras de plomo y estaño enfriados por debajo de su temperatura crítica en presencia de un campo magnético.

Origen

Meissner y Ochsenfeld encontraron que el campo magnético se anula completamente en el interior del material superconductor y que las líneas de campo magnético son expulsadas del interior del material, por lo que este se comporta como un material diamagnético perfecto. El efecto Meissner es una de las propiedades que definen la superconductividad y su descubrimiento sirvió para deducir que la aparición de la superconductividad es una transición de fase a un estado diferente.

La expulsión del campo magnético del material superconductor posibilita la formación de efectos curiosos, como la levitación de un imán sobre un material superconductor a baja temperatura que se muestra en la figura.

La ecuación de London

La primera teoría fenomenológica que explica el efecto Meissner se basa en la ecuación de Beaner:

Ecuacion de london1.png

donde λL depende de la cantidad ns de electrones (por unidad de volumen, es decir, densidad) que se encuentran en estado superconductor:

Ecuacion de london2.png

La ecuación, desarrollada por los hermanos Fritz y Heinz London en 1935,1 explica la forma que ha de tener un campo magnético para que se cumplan las condiciones fundamentales que se dan en el efecto Meissner, que son:

1. que el campo magnético sea nulo en el interior del superconductor, 2. que las corrientes eléctricas estén limitadas a la superficie del superconductor, en una capa de un espesor del orden de lo que se conoce como la longitud de penetración ?L, siendo nulas en el interior.

800px-EXPULSION.png Los hermanos London desarrollaron su teoría pensando que los portadores de carga eran electrones, lo cual se vio que era erróneo varias décadas después. Sin embargo, a pesar de este desacierto inicial, los resultados experimentales no se vieron muy afectados debido a que la longitud de penetración es esencialmente la misma en ambos casos:

Longitud de penetracion.png l primero en darse cuenta del error fue Lars Onsager en 1953 investigando la cuantización del flujo magnético que pasa por un anillo superconductor: el valor mínimo del flujo le salía exactamente la mitad de lo que debía ser, lo cual está acorde con una carga 2e. Basándose en esta idea Cooper expondría la idea de que los portadores de carga no son en realidad electrones, sino parejas de electrones (conocidas como pares de Cooper), como se explicó con todo detalle en la teoría BCS más tarde.

Cuantización del flujo magnético en un anillo superconductor.png Cuantización del campo magnético en un anillo superconductor.

La ecuación de Pippard

La ecuación de London (1) tiene diversas limitaciones. La principal de ellas es que no respeta el principio fundamental de la física según el cual dos sucesos lo suficientemente alejados uno de otro no pueden interferir entre sí. Dicho de otra forma, se trata de una teoría no local. Esto se debe a que los dos electrones que forman el par de Cooper están relativamente alejados uno de otro. No obstante, en su momento los hermanos London no podían saber esto, ya que ni siquiera sabían que se trataba de dos electrones juntos en lugar de uno.

Para resolver esto Brian Pippard presentó en 1953 la ecuación de Pippard, que es más general que la de los hermanos London, y fue corroborada poco más tarde por la teoría BCS.

El efecto Meissner cerca de la temperatura crítica

Debido a la dependencia de la longitud de penetración con la densidad de electrones en el estado superconductor, es fácil ver que cuanto más se acerque la temperatura de la muestra a la temperatura crítica, menos electrones habrá en estado superconductor y por lo tanto el campo magnético penetrará cada vez más en el superconductor. Cuando el superconductor alcanza la temperatura crítica la longitud de penetración tiende a infinito, lo que significa que el campo magnético puede penetrar en la muestra sin oposición alguna, es decir, el efecto Meissner desaparece.

Históricamente fue difícil comprender por qué la longitud de penetración aumentaba con la temperatura, ya que no se supo hasta más tarde que los electrones en estado superconductor (es decir, aquellos que están de dos en dos formando pares de Cooper) conviven con los electrones en estado normal (es decir, desapareados), y que la densidad de electrones en un estado u otro depende de la temperatura.

Valores típicos de la longitud de penetración

Teniendo en cuenta la definición dada más arriba, tomando los valores correspondientes a las constantes y dando a la densidad de electrones en estado superconductor ns un valor típico de unos 1023 electrones por cm3 (que será menor a medida que la temperatura se acerque a la crítica) se obtiene una longitud de penetración ?L ~ 1700 Å, lo que corresponde a una penetración entre los centenares y los millares de capas atómicas, lo cual corresponde bastante bien con los valores experimentales.

Fuentes

F. London and H. London (marzo de 1935). "The Electromagnetic Equations of the Supraconductor". Proceedings of the Royal Society A 149 (866): 71-88. MG Castellano y otros (2003). "Tracing the characteristics of a flux qubit with a hysteretic dc-superconducting quantum interference device comparator". Journal of Applied Physics 94: 7935. LN Cooper (noviembre de 1956). "Bound Electron Pairs in a Degenerate Fermi Gas". Physical Review 104 (4): 1189 - 1190.

Enlaces externos

[[1]] [[2]]