Matemática Pura (concepto)

(Redirigido desde «Matemáticas puras»)
Matemática Pura
Información sobre la plantilla
MATEMATICA.jpg
Campo al que perteneceMatemática


Matemáticas puras. Se refiere informalmente al estudio de las matemáticas, in se y per se, es decir, ‘por sí mismas’ y ‘en tanto que tales’, sin referencia a las aplicaciones prácticas que pudieran derivarse o a las que pudieran aplicarse.

Descripción

Se encarga de estudiar las teorías relacionadas con: análisis complejo, análisis funcional, teoría de grupos, teoría de números, algebra lineal, teoría de grafos, teoría de operadores, teoría de aproximación, topología conjuntista, topología algebraica, y teoría combinatoria, todas estas herramientas son fundamentales para realizar matemáticas aplicadas.

Con el mismo alcance, se suelen también utilizar las denominaciones de matemáticas especulativas, fundamentales o abstractas. Estas nociones se contraponen tradicionalmente a la de las matemáticas aplicadas, que se focaliza principalmente en el empleo de instrumentos matemáticos en disciplinas de diversos órdenes, que cubren tanto las ciencias naturales como la economía y otras ciencias sociales, así como su utilización en ingeniería y en todo tipo de aplicaciones tecnológicas.

La relación entre matemáticas puras y aplicadas

Se ha destacado que existen ramas matemáticas donde prevalecen los aspectos «puros», o respecto de las que no se hayan encontrado todavía aplicaciones prácticas, pero nada excluye que tal cosa suceda en el futuro. Al respecto, decía Nikolái Lobachevski (1792-1856): No existe rama alguna de las matemáticas, por abstracta que sea, que no pueda algún día ser aplicada a fenómenos del mundo real. (There is no branch of mathematics, however abstract, which may not someday be applied to the phenomena of the real world.) La historia confirmó el presentimiento de Lobachevski. Así, por ejemplo, la teoría de los números, que durante siglos tuvo un carácter puramente especulativo, llegó a tal punto que Godfrey Harold Hardy se felicitaba de que existiera «al menos una ciencia que de cualquier manera que sea se encuentra por sí misma tan alejada de la actividad humana ordinaria que se conservará limpia y gentil» Pero a raíz de los trabajos de Ronald Rivest, Adi Shamir y Leonard Adleman la teoría de los números encontró una decisiva e insospechada aplicación en criptografía, y con la descripción del algoritmo RSA se popularizó, a través de Internet, la utilización de la criptografía asimétrica, o por clave pública. Inversamente, cualquier rama, o incluso cualquier problema matemático, puede abordarse privilegiando un enfoque puramente matemático o formal, sin referencia alguna a la eventual aplicación que pueda hacerse o de su vínculo con «la realidad» tangible. Un ejemplo clásico al respecto es el del análisis matemático, inventado simultáneamente por Isaac Newton y Gottfried Leibniz, y desde entonces utilizado fructuosamente en la física, cuya formalización fue lograda rigurosa y abstractamente por Karl Weierstrass (1815-1897) en el siglo XIX. No existe un consenso general entre los matemáticos respecto las fronteras que separan claramente lo «puro» y lo «aplicado»; un debate al respecto fue publicado por Hardy.3 Para este autor, la matemática aplicada busca expresar verdades físicas dentro de un marco matemático, mientras que las matemáticas puras buscan expresar verdades independientes del mundo físico. Para Hardy, la matemática pura es la verdadera matemática, que ostenta un valor estético permanente, una belleza intrínseca que la hacen comparable a la pintura o a la poesía. Con la expresión matemática pura y sus equivalentes se designa, más que una rama de las matemáticas (como podrían ser el álgebra, la geometría, el análisis, etc.), una modalidad de abordar el estudio de las mismas. Desde un punto de vista práctico e histórico, ambas pueden caractizarse como enfoques complementarias que se inspiran mutuamente

Reseña histórica

Si bien los estudiosos percibieron ambos aspectos desde tiempos inmemoriales, en un principio el interés de las matemáticas estaba dado fundamentalmente por el uso práctico que podía hacerse de las mismas, es decir, el desarrollo de técnicas de cálculo para resolver problemas concretos de mediciones o ligados al comercio, lo que no requería en sí mismo un grado elevado de abstracción. La locución matemáticas puras (pure mathematics) se acuñó a mediados del siglo XIX en la cátedra de matemática fundada originariamente por Lady Mary Sadlier en la Universidad de Cambridge, Inglaterra. Desde fines del siglo XIX se hizo evidente que un elevado grado de abstracción era idóneo, y más aún, necesario, para proporcionar herramientas cada vez más poderosas para el manejo y la solución de problemas reales complejos.

Definición formal

Los intentos de formalizar el concepto matemática pura están emparentados con las nociones de axiomatización y el criterio de prueba rigurosa. De acuerdo con la escuela del grupo Bourbaki, la matemática pura se relaciona con lo que está probado. En el más alto nivel de abstracción posible, [[Bertrand Russell propone una definición formal general, que según este autor abarca todo tipo de matemática que en la historia de las matemáticas o en el futuro pueda caracterizarse como «pura»: La matemática pura es la clase de todas las proposiciones de la forma p implica q, donde p y q son proposiciones que contienen una o más variables, idénticas en ambas proposiciones, y ni p y ni q contienen constantes otras que lógicas. Las constantes lógicas, por su parte, son nociones definibles en los términos siguientes: la implicación, que es la relación de un término respecto de una clase de la cual es miembro, la noción de manera tal que (such that), la noción de relación y nociones de ese tipo que pueden ser cubiertas por la noción general de proposiciones de la forma referida. Además de los mencionados, la matemática utiliza una noción que no es parte constituyente de las proposiciones que considera, específicamente, la noción de verdad. Conviene agregar que para Bertrand Russell la matemática se deriva de la lógica.

Enlaces externos

  • [Fundamentos de las matemáticas]
  • [Matemática inversa]
  • Axiomatización
  • Teoría de categorías

Fuente