Neutrón
|
Neutrones. Son partículas eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
El neutrón es una partícula sin carga neta, presente en el núcleo atómico de prácticamente todos los átomos, excepto el protio. Aunque se dice que el neutrón no tiene carga, en realidad está compuesto por tres partículas fundamentales cargadas llamadas quarks, cuyas cargas sumadas son cero. Por tanto, el neutrón es un barión neutro compuesto por dos quarks de tipo abajo, y un quark de tipo arriba. Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 15 minutos (885.7 ± 0.8 s), cada neutrón se descompone en un electrón, un antineutrino y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.
El neutrón es necesario para la estabilidad de casi todos los núcleos atómicos, a excepción del isótopo hidrógeno-1. La interacción nuclear fuerte es responsable de mantenerlos estables en los núcleos atómicos.
Historia
La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas , demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.
Ernest Rutherford propuso por primera vez la existencia del neutrón en 1920, para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones. En el año 1909, en Alemania, Walther Bothe y H. Becker descubrieron que si las partículas alfa del polonio, dotadas de una gran energía, caían sobre materiales livianos, específicamente berilio, boro o litio, se producía una radiación particularmente penetrante. En un primer momento se pensó que eran rayos gamma, aunque éstos eran más penetrantes que todos los rayos gammas hasta ese entonces conocidos, y los detalles de los resultados experimentales eran difíciles de interpretar sobre estas bases.
En 1932, en París, Irène Joliot-Curie y Frédéric Joliot mostraron que esta radiación desconocida, al golpear parafina u otros compuestos que contenían hidrógeno, producía protones a una alta energía. Eso no era inconsistente con la suposición de que eran rayos gammas de la radiación, pero un detallado análisis cuantitativo de los datos hizo difícil conciliar la ya mencionada hipótesis. Finalmente (a finales de 1932) el físico inglés James Chadwick, en Inglaterra, realizó una serie de experimentos de los que obtuvo unos resultados que no concordaban con los que predecían las fórmulas físicas: la energía producida por la radiación era muy superior y en los choques no se conservaba el momento. Para explicar tales resultados, era necesario optar por una de las siguientes hipótesis: o bien se aceptaba la no conservación del momento en las colisiones o se afirmaba la naturaleza corpuscular de la radiación. Como la primera hipótesis contradecía las leyes de la física, se prefirió la segunda. Con ésta, los resultados obtenidos quedaban explicados pero era necesario aceptar que las partículas que formaban la radiación no tenían carga eléctrica. Tales partículas tenían una masa muy semejante a la del protón, pero sin carga eléctrica, por lo que se pensó que eran el resultado de la unión de un protón y un Electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron la idea del dipolo y se conoció la naturaleza de los neutrones.
Algunas de sus propiedades
- Masa: mn = 1,675x10-27 Kg = 1,008587833 uma
- Vida media: tn = 886,7 ± 1,9 s
- Momento magnético: mn = -1,9130427 ± 0,0000005 mN
- Carga eléctrica: qn = (-0,4 ± 1.1) x 10-21 e
Fisión nuclear
El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones. Los neutrones son fundamentales en las reacciones nucleares: una reacción en cadena se produce cuando un neutrón causa la fisión de un Átomo fisible, produciéndose un mayor número de neutrones que causan a su vez otras fisiones. Según esta reacción se produzca de forma controlada o incontrolada se tiene lo siguiente:
- Reacción incontrolada: sólo se produce cuando se tiene una cantidad suficiente de combustible nuclear -masa crítica-; fundamento de la bomba nuclear.
- Reacción controlada: mediante el uso de un moderador en el reactor nuclear; fundamento del aprovechamiento de la energía nuclear.