Diferencia entre revisiones de «Rayo»

(Tipos de Rayos)
m (Protegió «Rayo» ([Editar=Sólo moderadores] (indefinido) [Trasladar=Sólo moderadores] (indefinido)))
 
(No se muestran 5 ediciones intermedias de 4 usuarios)
Línea 1: Línea 1:
{{Definición|Nombre=Descargas eléctricas
+
{{Sistema:Artículo certificado
atmosféricas |imagen=Rayoo.jpg|concepto=Son fenómenos meteorológicos consistentes en [[descarga eléctrica|descargas eléctricas]] engendradas en el interior de un condensador natural ([[nubes]]) que se propagan a través de un dieléctrico como es el [[aire]].}}
+
|contenido=la '''MSc. Mayra Arap Fresno''', perteneciente a la '''[[Universidad Agraria de La Habana]]''' (UNAH).
<div align="justify">
+
}}
'''Descargas eléctricas atmosféricas''' . Más conocidas como rayos, constituyen un peligro potencial. Se estima en 940 millones las descargas eléctricas que cada día ocurren en el mundo producto de unas 44 000 tormentas. Los rayos alcanzan [[temperatura]]s cercanas a 30 000°C y velocidades de 1 600 km/h, al tomar la ruta más corta para llegar a su destino provocan alrededor de 1 000 fallecimientos anuales.
 
== Zonas de mayor ocurrencia ==
 
Los [[satélite]]s evidencian que las zonas donde ocurren con mayor frecuencia las descargas eléctricas corresponden a [[La Florida]], Montes [[Himalaya]]s y [[África]] Central.
 
  
==Formas en que se originan==
+
{{Definición
Los rayos se originan por el movimiento ascendente y descendente del [[viento]], dentro de las [[nubes]] del tipo [[Cúmulos|cúmulo]] [[Nimbostratus|nimbo]], donde la concentración excesiva de [[carga eléctrica|cargas eléctricas]] negativas y positivas da lugar a las descargas eléctricas en forma de chispa, que puede ocurrir en una nube, entre dos, o entre estas y el [[suelo]].
+
|nombre= Rayo
 +
|imagen= Rayo.jpg
 +
|tamaño=
 +
|concepto= Es una poderosa descarga natural de electricidad estática, producida durante una tormenta eléctrica, que genera un pulso electromagnético.
 +
}}''' Rayo '''. Es una poderosa descarga natural de electricidad estática, producida durante una tormenta eléctrica, que genera un pulso electromagnético. Generalmente, son producidos por partículas positivas en la tierra y negativas en nubes de desarrollo vertical llamadas cumulonimbos. Cuando un cumulonimbo alcanza la tropopausa, las cargas positivas de la [[nube]] atraen a las cargas negativas; este movimiento de cargas a través de la atmósfera constituyen los rayos. Esto produce un efecto de ida y vuelta; se refiere a que al subir las partículas instantáneamente regresan causando la visión de que los rayos bajan. Un rayo puede generar una potencia instantánea de 1 gigawatt (mil millones de vatios), pudiendo ser comparable a la de una explosión nuclear.
  
==Tipos de Rayos  ==
+
== Formación ==
Se clasifican en cuatro tipos: ''Zig Zag'', ''Difuso'', ''Bola'' o ''Esférico'', y de ''Rosario''.
+
 
+
Cómo se inicia la descarga eléctrica sigue siendo un tema de debate. Los científicos han estudiado las causas fundamentales, que van desde las perturbaciones atmosféricas (viento, humedad y presión) hasta los efectos del viento solar y a la acumulación de partículas solares cargadas. Se cree que el [[hielo]] es el componente clave en el desarrollo, propiciando una separación de las cargas positivas y negativas dentro de la [[nube]]. Los rayos pueden producirse en las nubes de cenizas de erupciones volcánicas, o puede ser causado por violentos incendios forestales que generen polvo capaz de crear carga estática.  
*'''Zig Zag''': Son de trazo sinuoso, irregular y brillante. Su irregularidad está dada por la variable conductividad en las diversas partes del [[aire]], las [[nubes]], la [[ionización]] y los contaminantes.  
+
 
*'''Difuso''': Causan iluminación general, con los contornos bien definidos.  
+
=== Hipótesis de la inducción electrostática ===
*'''Bola o Esférico''': Presentan forma de [[globo]] de [[fuego]], brillante y de variados [[color]]es. Sus dimensiones oscilan entre 25 o 65 cm y se mueven con lentitud; surgen con [[tormentas]] o sin ellas, y desaparecen silenciosamente o en medio de un gran estallido. Son más frecuentes en zonas extra-tropicales.  
+
 
[[Archivo:CG_Heart.gif|thumb|Ecocardiografía tridimensional.]]
+
De acuerdo con la hipótesis de la inducción electrostática, las cargas son impulsadas con procesos que aún son inciertos. La separación de las cargas parece requerir de una fuerte corriente aérea ascendente que lleve las gotas de agua hacia arriba, superenfriándolas entre los 10 y los 20 °C bajo cero. Estas colisionan con los cristales de hielo formando una combinación de agua-hielo denominada [[granizo]]. Las colisiones producen que una carga ligeramente positiva sea transferida a los cristales de [[hielo]], y una carga ligeramente negativa hacia el granizo. Las corrientes conducen los cristales de hielo menos pesados hacia arriba, causando que en la parte posterior de la nube se acumulen cargas positivas. La [[gravedad]] causa que el granizo más pesado con carga negativa caiga hacia el centro y a las partes más bajas de las nubes. La separación de cargas y la acumulación continúa hasta que el potencial eléctrico se vuelva suficiente para iniciar una descarga eléctrica, que ocurre cuando la distribución de las cargas positivas y negativas forman un campo eléctrico lo suficientemente fuerte.
*'''Rosario''': Aparentan una serie de globos luminosos, distanciados unos de otros de forma regular y ordenados en una línea que cruza el [[horizonte]].[[Archivo:Lightnings_sequence_2_animation.gif|thumb|Representación de un rayo.]]
+
 
 +
=== Hipótesis del mecanismo de polarización ===
 +
 
 +
El mecanismo por el cual la separación de cargas sucede sigue siendo objeto de investigación. Otra hipótesis es el mecanismo de polarización, que tiene dos componentes:  
 +
 
 +
#La caída de las gotas de [[hielo]] y [[agua]] se vuelven eléctricamente polarizadas en el momento en que caen a través del campo eléctrico natural de la [[Tierra]].
 +
#Las partículas de hielo que chocan se cargan por inducción electroestática (mirar arriba).
 +
 
 +
Hay varias hipótesis adicionales que explican el origen de la separación de cargas.
 +
 
 +
=== Ruta principal e impacto de retorno ===
 +
 
 +
En una nube de tormenta, una carga eléctrica igual pero opuesta a la carga de la base de la nube se induce en la tierra por debajo de la [[nube]]. El [[suelo]] con carga inducida sigue el movimiento de la nube manteniéndose por debajo; si el campo eléctrico es lo suficientemente fuerte, una descarga electrostática (denominada corriente positiva) puede desarrollarse a partir de estas condiciones. Esto fue teorizado por Heinz Kasemir. A medida que el campo eléctrico aumenta, la corriente positiva puede convertirse en una ruta principal más grande y caliente que la actual y finalmente llegar a la ruta principal de paso que desciende desde la nube. Es también posible que muchas corrientes se desarrollen a través de diferentes objetos simultáneamente, con sólo uno haciendo contacto con el principal y formando la trayectoria de la descarga principal. Se han tomado fotografías de este proceso aún cuando ambas corrientes no estaban aún conectadas.
 +
 
 +
Una vez que el canal de aire ionizado se establece entre la nube y el suelo, se convierte en una ruta de menor resistencia, y permite una propagación de corriente mucho mayor desde la tierra a la nube. Este es el impacto de retorno y es el que más intensidad luminosa posee, siendo una de las partes más notables de la descarga del rayo.
 +
 
 +
La descarga inicial bipolar, o ruta de aire ionizado, empieza con una combinación de [[agua]] con carga negativa y una región de hielo en la nube de [[tormenta]]. Los canales de descarga ionizados son conocidos como rutas principales de paso, la mayoría de éstas superan los 45 metros de longitud. Las rutas principales cargadas positiva y negativamente avanzan en direcciones opuestas. Las cargadas negativamente avanzan hacia abajo en una serie de saltos rápidos (pasos). A medida que continúa el descenso, las rutas principales de paso pueden ramificarse en varios caminos. La progresión de las rutas principales de paso toma un tiempo relativamente largo en llegar al [[suelo]] (cientos de milisegundos). Esta fase inicial necesita de una relativamente pequeña corriente eléctrica (decenas o cientos de amperios, siendo ésta casi invisible, cuando se compara con el canal de rayos posterior.  
 +
 
 +
Cuando una ruta principal de paso alcanza el suelo, la presencia de cargas opuestas en el suelo mejora la potencia del campo eléctrico. El campo eléctrico es más fuerte en objetos en contacto con el suelo cuyas partes más altas están cercanos a la base de la nube de tormenta, como árboles o edificios altos.
 +
 
 +
== Tipos ==
 +
 
 +
Algunos rayos presentan características particulares; los científicos y el público en general han dado nombres a estos diferentes tipos de rayos. El rayo que se observa más comúnmente es el rayo streak. Esto no es más que el trazo de retorno, la parte visible del trazo del rayo. La mayoría de los trazos se producen dentro de una [[nube]], por lo que no vemos la mayoría de los trazos individuales de retorno durante una [[tormenta]].
 +
 
 +
=== Rayo de nube a tierra ===
 +
 
 +
Es el más conocido y el segundo tipo más común. De todos los tipos de rayos, este representa la mayor amenaza para la vida y la propiedad, puesto que impacta contra la tierra. El rayo nube a tierra es una descarga entre una [[nube]] cumulonimbos y la tierra. Comienza con un trazo inicial que se mueve desde la nube hacia abajo.
 +
 
 +
==== Rayo perla ====
 +
 
 +
El rayo perla es un tipo de rayo de nube a tierra que parece romper en una cadena de secciones cortas, brillantes, que duran más que una descarga habitual. Es relativamente raro. Se han propuesto varias teorías para explicarlo; una es que el observador ve porciones del final de canal de relámpago, y que estas partes parecen especialmente brillantes. Otra es que, en el rayo cordón, el ancho del canal varía; como el canal de relámpago se enfría y se desvanece, las secciones más amplias se enfrían más lentamente y permanecen aún visibles, pareciendo una cadena de perlas y raramente se elevan en el cielo esparciendo una luz a lo largo del rayo.
 +
 
 +
==== Rayo staccato ==== 
 +
 
 +
Rayo staccato es un rayo de nube a tierra, con un trazo de corta duración que aparece como un único flash muy brillante y a menudo tiene ramificaciones considerables.  
 +
 
 +
==== Rayo bifurcado ====
 +
 
 +
Rayo bifurcado es un nombre, no uso formal, para rayos de nube a tierra que exhiben la ramificación de su ruta.
 +
 
 +
=== Rayo de tierra a nube ===
  
== Mitos ==
+
El rayo tierra a nube es una descarga entre la tierra y una nube cumulonimbos, que es iniciado por un trazo inicial ascendente; es mucho más raro que el rayo nube a tierra. Este tipo de rayo se forma cuando iones cargados negativamente, se elevan desde el suelo y se encuentran con iones cargados positivamente en una nube cumulonimbos. Entonces el rayo vuelve a tierra como trazo.
La creencia de que los rayos no caen más de dos veces en un mismo sitio es falsa. Ejemplo de ello es el [[Empire State]], el mayor [[rascacielos]] de [[Nueva York]]. En un año fue alcanzado 42 veces, doce de ellos durante una tormenta en la que recibió nueve impactos en 22 minutos. Por supuesto, las descargas siempre daban en el gran [[pararrayos]] que lo corona. 
 
=== Protector para las descargas eléctricas atmosféricas ===
 
El [[pararrayos]] es el medio más eficaz para proteger edificaciones y equipos, de la acción destructiva de los rayos, aunque no evita la descarga eléctrica, la canaliza.
 
[[Image:Benjamin_franklin.jpg‎|thumb|left||[[Benjamín Franklin|Benjamín Franklin]]‎]]Su inventor fue el físico y estadista estadounidense [[Benjamín Franklin|Benjamín Franklin]] ([[1706|1706]] – [[1790|1790]]), quien lo probó con una [[cometa]] en [[junio]] de [[1752|1752]].  
 
  
El pararrayos debe situarse en las partes más elevadas y vulnerables, el [[cable]] que deriva a tierra se confecciona con [[hierro galvanizado]], separado unos 10 cm de la pared; al menos deben ir dos en cada edificación. La tierra se conecta mediante lechos de [[agua]], fondo de [[pozo]]s, placas o telas metálicas y tubos, la resistencia del conductor a tierra será la menor de todas las circundantes, su contacto nunca será menor de 1 m² de [[superficie]].<br>
+
=== Rayo de nube a nube ===
  
La distancia entre dos pararrayos no debe exceder los 20 m, pues la zona que protege no va más allá de los 16 m a partir de la vertical. Este artefacto resguarda a la edificación y a los equipos que tienen conexión con el exterior, como los electrónicos y de calefacción. Si están mal instalados, resultan más perjudiciales que útiles. Existen algunos lugares de alto riesgo en caso de ser alcanzado tales como, altas construcciones, depósitos de [[combustibles]], complejos eléctricos, almacenes de [[explosivos]], [[cosmódromo]]s y sitios con alguna peligrosidad, los que son especialmente resguardados con pararrayos.
+
Este tipo de rayos pueden producirse entre las zonas de nube que no estén en contacto con el [[suelo]]. Cuando ocurre entre dos nubes separadas; es llamado rayo inter-nube y cuando se produce entre zonas de diferente potencial eléctrico, dentro de una sola nube, se denomina rayo intra-nube. El rayo intra-nube es el tipo que ocurre con más frecuencia. Existe un fenómeno en la naturaleza muy poco conocido, al cual se le ha dado el nombre de centella, bolas de luz o bolas de fuego. Estas son esferas luminosas tan brillantes como las lámparas fluorescentes. El tamaño de las esferas varía de algunos centímetros a varios metros de diámetro. Pueden tomar cualquier coloración, aunque el violeta y el verde son muy raros. El fenómeno toma cuerpo en condiciones especiales y su materialización es instantánea. Algunas veces parece que el destello es continuo y, otras, intermitente. Las centellas pueden viajar paralelamente a lo largo de un conductor, cerca de una sustancia aislante, o en el seno mismo del [[aire]]. El fenómeno puede durar de unos cuantos segundos a varios minutos. Algunas centellas se desvanecen poco a poco y otras desaparecen abruptamente y, en ocasiones, explotan.
 +
 +
== Bibliografías ==
  
==Efectos  ==
+
*Feynman, Leighton, Sands, “Física” Vol. II, Addison- Wesley- Longman
*'''Efectos mecánicos''': Destruye edificios y objetos malos conductores de [[electricidad]], y otros que también pueden lanzar a distancia. Inflaman y funden materiales de diversa índole.  
+
*Sears, Zemansky, Young, Freedman, “Física Universitaria” Vol. II, Addison Wesley- Longman, novena edición.
*'''Efectos físicos''': Imanta los objetos metálicos. La intensidad de las descargas pueden alcanzar los 20 000 amperios.  
+
*Garófalo J, Balerdi C. Tormentas eléctricas y relámpagos. Universidad de Florida; 2007.
*'''Efectos químicos''': Transforma el [[oxígeno]] en [[ozono]], con un clásico [[olor]] fuerte, supuestamente a [[azufre]]. Causan la combinación parcial del [[nitrógeno]] del [[aire]] con oxígeno, formando compuestos nitrogenados. A veces provocan el desprendimiento de polvos y gases dañinos al hombre.  
+
*Barry, R. and R. Chorley. “Atmósfera, tiempo y clima”, 7 ed., Omega, Barcelona, España, pp.441, 1999.
*'''Efectos fisiológicos''': Son los más perjudiciales por causar [[muerte]] y daños permanentes. Algunas victimas no presentan huellas del impacto, pero la [[autopsia]] revela hemorragias internas y congestión cerebral.[[Archivo:Krunkwerke_-_IMG_4515_(by-sa).jpg|thumb|Rayo de nube a tierra]]
+
*Hebbs, J. “Climate Hazards”. Encyclopedia of World Climatology. Edited by John E. Oliver. Springer, London. pp.233-243, 2005.
 +
*Pielke Jr, Roger, (1999), Storms Volume II, Londres: Routledge Hazards and Disasters Series. pp. 43-80.
  
== Posibles daños orgánicos ==
+
== Fuentes ==
Las personas alcanzadas por rayos fallecen si el [[corazón]] o la [[respiración]] se les paralizan por tiempo prolongado, o sus [[órganos]] quedan carbonizados. Los sobrevivientes sufren afecciones temporales o permanentes en el [[cerebro]] y la [[columna]], por lo que pueden padecer de: [[catarata]]s, [[sordera]], perdida de [[memoria]], [[alopecia|caída del pelo]], [[quemaduras]] y [[desmayo]]s.
 
  
==  Medidas de precaución  ==
+
*[https://www.meteorologiaenred.com/tipos-de-rayos.html/ Meteorología en Red]
Las personas deben protegerse en lugares seguros en caso de [[tormentas eléctricas]] muy intensas, y evitar la cercanía a los objetos y compuestos que resulten buenos conductores de [[electricidad]], como el [[aire]] caliente, el [[humo]] y el [[hollín]], al igual que los [[espejo]]s, por la cantidad de [[azogue]] que contienen. De hallarse en la [[intemperie]], protéjase en el edificio más cercano con vigas de [[acero]] en su estructura, que no sea solo de [[madera]], de lo contrario refúgiese en una hondonada o zanja, alejarse de los [[árboles]] es una buena opción ya que son blanco fácil de los rayos.
+
*[https://www.cdc.gov/es/disasters/lightning/faq.html/ Centro para el Control y la Prevención de Enfermedades – Estados Unidos]
 +
*[https://www.seas.es/blog/varios/los-relampagos-y-sus-consecuencias/ SEAS – Estudios Superiores Abiertos Online]
 +
*[https://portal.ucol.mx/content/micrositios/74/file/tripticos/tormentas_electricas.pdf/ Coordinación General de Tecnologías de Información de la Universidad de Colima – México]
 +
*[https://definicion.de/rayo/ Definición.de]
 +
*[https://at3w.com/blog/mitos-y-curiosidades-sobre-el-rayo/ Sistema de protección contra el rayo – Aplicaciones Tecnológicas]
  
Todas las medidas que se adopten para evitar ser alcanzados por un rayo aumentan las posibilidades de sobrevivir a una tormenta eléctrica, una persona en caso de ser alcanzada por rayo puede mantenerse con vida mediante reanimación cardio-pulmonar, hasta ser atendido por personal médico especializado.
 
  
==Fuentes  ==
+
[[Category:Geografía]]  
*Revista Juventud Técnica. Edición # 322, Enero-Febrero del [[2005|2005]].
+
[[Category:Física de la atmósfera]]
*[http://www.juventudtecnica.cu Revista Juventud Técnica]  
+
[[Categoría:Artículos certificados]]
*[http://html.rincondelvago.com/tormentas-electricas.html El rincón del Vago]
 
[[Category:Física_de_la_atmósfera]]
 

última versión al 08:33 4 ago 2021


Rayo
Información sobre la plantilla
Rayo.jpg
Concepto:Es una poderosa descarga natural de electricidad estática, producida durante una tormenta eléctrica, que genera un pulso electromagnético.

Rayo . Es una poderosa descarga natural de electricidad estática, producida durante una tormenta eléctrica, que genera un pulso electromagnético. Generalmente, son producidos por partículas positivas en la tierra y negativas en nubes de desarrollo vertical llamadas cumulonimbos. Cuando un cumulonimbo alcanza la tropopausa, las cargas positivas de la nube atraen a las cargas negativas; este movimiento de cargas a través de la atmósfera constituyen los rayos. Esto produce un efecto de ida y vuelta; se refiere a que al subir las partículas instantáneamente regresan causando la visión de que los rayos bajan. Un rayo puede generar una potencia instantánea de 1 gigawatt (mil millones de vatios), pudiendo ser comparable a la de una explosión nuclear.

Formación

Cómo se inicia la descarga eléctrica sigue siendo un tema de debate. Los científicos han estudiado las causas fundamentales, que van desde las perturbaciones atmosféricas (viento, humedad y presión) hasta los efectos del viento solar y a la acumulación de partículas solares cargadas. Se cree que el hielo es el componente clave en el desarrollo, propiciando una separación de las cargas positivas y negativas dentro de la nube. Los rayos pueden producirse en las nubes de cenizas de erupciones volcánicas, o puede ser causado por violentos incendios forestales que generen polvo capaz de crear carga estática.

Hipótesis de la inducción electrostática

De acuerdo con la hipótesis de la inducción electrostática, las cargas son impulsadas con procesos que aún son inciertos. La separación de las cargas parece requerir de una fuerte corriente aérea ascendente que lleve las gotas de agua hacia arriba, superenfriándolas entre los 10 y los 20 °C bajo cero. Estas colisionan con los cristales de hielo formando una combinación de agua-hielo denominada granizo. Las colisiones producen que una carga ligeramente positiva sea transferida a los cristales de hielo, y una carga ligeramente negativa hacia el granizo. Las corrientes conducen los cristales de hielo menos pesados hacia arriba, causando que en la parte posterior de la nube se acumulen cargas positivas. La gravedad causa que el granizo más pesado con carga negativa caiga hacia el centro y a las partes más bajas de las nubes. La separación de cargas y la acumulación continúa hasta que el potencial eléctrico se vuelva suficiente para iniciar una descarga eléctrica, que ocurre cuando la distribución de las cargas positivas y negativas forman un campo eléctrico lo suficientemente fuerte.

Hipótesis del mecanismo de polarización

El mecanismo por el cual la separación de cargas sucede sigue siendo objeto de investigación. Otra hipótesis es el mecanismo de polarización, que tiene dos componentes:

  1. La caída de las gotas de hielo y agua se vuelven eléctricamente polarizadas en el momento en que caen a través del campo eléctrico natural de la Tierra.
  2. Las partículas de hielo que chocan se cargan por inducción electroestática (mirar arriba).

Hay varias hipótesis adicionales que explican el origen de la separación de cargas.

Ruta principal e impacto de retorno

En una nube de tormenta, una carga eléctrica igual pero opuesta a la carga de la base de la nube se induce en la tierra por debajo de la nube. El suelo con carga inducida sigue el movimiento de la nube manteniéndose por debajo; si el campo eléctrico es lo suficientemente fuerte, una descarga electrostática (denominada corriente positiva) puede desarrollarse a partir de estas condiciones. Esto fue teorizado por Heinz Kasemir. A medida que el campo eléctrico aumenta, la corriente positiva puede convertirse en una ruta principal más grande y caliente que la actual y finalmente llegar a la ruta principal de paso que desciende desde la nube. Es también posible que muchas corrientes se desarrollen a través de diferentes objetos simultáneamente, con sólo uno haciendo contacto con el principal y formando la trayectoria de la descarga principal. Se han tomado fotografías de este proceso aún cuando ambas corrientes no estaban aún conectadas.

Una vez que el canal de aire ionizado se establece entre la nube y el suelo, se convierte en una ruta de menor resistencia, y permite una propagación de corriente mucho mayor desde la tierra a la nube. Este es el impacto de retorno y es el que más intensidad luminosa posee, siendo una de las partes más notables de la descarga del rayo.

La descarga inicial bipolar, o ruta de aire ionizado, empieza con una combinación de agua con carga negativa y una región de hielo en la nube de tormenta. Los canales de descarga ionizados son conocidos como rutas principales de paso, la mayoría de éstas superan los 45 metros de longitud. Las rutas principales cargadas positiva y negativamente avanzan en direcciones opuestas. Las cargadas negativamente avanzan hacia abajo en una serie de saltos rápidos (pasos). A medida que continúa el descenso, las rutas principales de paso pueden ramificarse en varios caminos. La progresión de las rutas principales de paso toma un tiempo relativamente largo en llegar al suelo (cientos de milisegundos). Esta fase inicial necesita de una relativamente pequeña corriente eléctrica (decenas o cientos de amperios, siendo ésta casi invisible, cuando se compara con el canal de rayos posterior.

Cuando una ruta principal de paso alcanza el suelo, la presencia de cargas opuestas en el suelo mejora la potencia del campo eléctrico. El campo eléctrico es más fuerte en objetos en contacto con el suelo cuyas partes más altas están cercanos a la base de la nube de tormenta, como árboles o edificios altos.

Tipos

Algunos rayos presentan características particulares; los científicos y el público en general han dado nombres a estos diferentes tipos de rayos. El rayo que se observa más comúnmente es el rayo streak. Esto no es más que el trazo de retorno, la parte visible del trazo del rayo. La mayoría de los trazos se producen dentro de una nube, por lo que no vemos la mayoría de los trazos individuales de retorno durante una tormenta.

Rayo de nube a tierra

Es el más conocido y el segundo tipo más común. De todos los tipos de rayos, este representa la mayor amenaza para la vida y la propiedad, puesto que impacta contra la tierra. El rayo nube a tierra es una descarga entre una nube cumulonimbos y la tierra. Comienza con un trazo inicial que se mueve desde la nube hacia abajo.

Rayo perla

El rayo perla es un tipo de rayo de nube a tierra que parece romper en una cadena de secciones cortas, brillantes, que duran más que una descarga habitual. Es relativamente raro. Se han propuesto varias teorías para explicarlo; una es que el observador ve porciones del final de canal de relámpago, y que estas partes parecen especialmente brillantes. Otra es que, en el rayo cordón, el ancho del canal varía; como el canal de relámpago se enfría y se desvanece, las secciones más amplias se enfrían más lentamente y permanecen aún visibles, pareciendo una cadena de perlas y raramente se elevan en el cielo esparciendo una luz a lo largo del rayo.

Rayo staccato

Rayo staccato es un rayo de nube a tierra, con un trazo de corta duración que aparece como un único flash muy brillante y a menudo tiene ramificaciones considerables.

Rayo bifurcado

Rayo bifurcado es un nombre, no uso formal, para rayos de nube a tierra que exhiben la ramificación de su ruta.

Rayo de tierra a nube

El rayo tierra a nube es una descarga entre la tierra y una nube cumulonimbos, que es iniciado por un trazo inicial ascendente; es mucho más raro que el rayo nube a tierra. Este tipo de rayo se forma cuando iones cargados negativamente, se elevan desde el suelo y se encuentran con iones cargados positivamente en una nube cumulonimbos. Entonces el rayo vuelve a tierra como trazo.

Rayo de nube a nube

Este tipo de rayos pueden producirse entre las zonas de nube que no estén en contacto con el suelo. Cuando ocurre entre dos nubes separadas; es llamado rayo inter-nube y cuando se produce entre zonas de diferente potencial eléctrico, dentro de una sola nube, se denomina rayo intra-nube. El rayo intra-nube es el tipo que ocurre con más frecuencia. Existe un fenómeno en la naturaleza muy poco conocido, al cual se le ha dado el nombre de centella, bolas de luz o bolas de fuego. Estas son esferas luminosas tan brillantes como las lámparas fluorescentes. El tamaño de las esferas varía de algunos centímetros a varios metros de diámetro. Pueden tomar cualquier coloración, aunque el violeta y el verde son muy raros. El fenómeno toma cuerpo en condiciones especiales y su materialización es instantánea. Algunas veces parece que el destello es continuo y, otras, intermitente. Las centellas pueden viajar paralelamente a lo largo de un conductor, cerca de una sustancia aislante, o en el seno mismo del aire. El fenómeno puede durar de unos cuantos segundos a varios minutos. Algunas centellas se desvanecen poco a poco y otras desaparecen abruptamente y, en ocasiones, explotan.

Bibliografías

  • Feynman, Leighton, Sands, “Física” Vol. II, Addison- Wesley- Longman
  • Sears, Zemansky, Young, Freedman, “Física Universitaria” Vol. II, Addison Wesley- Longman, novena edición.
  • Garófalo J, Balerdi C. Tormentas eléctricas y relámpagos. Universidad de Florida; 2007.
  • Barry, R. and R. Chorley. “Atmósfera, tiempo y clima”, 7 ed., Omega, Barcelona, España, pp.441, 1999.
  • Hebbs, J. “Climate Hazards”. Encyclopedia of World Climatology. Edited by John E. Oliver. Springer, London. pp.233-243, 2005.
  • Pielke Jr, Roger, (1999), Storms Volume II, Londres: Routledge Hazards and Disasters Series. pp. 43-80.

Fuentes