Abraham de Moivre

Revisión del 09:13 24 ago 2019 de Josefina (discusión | contribuciones) (Texto reemplazado: «<div align=justify>» por «»)
Abraham de Moivre
Información sobre la plantilla
De Moivre.jpeg
Concibió el teorema que lleva su nombre.
NombreAbraham de Moivre
Nacimiento26 de mayo de 1667
Vitry-le-François, Champagne, Bandera de Francia Francia
Fallecimiento27 de noviembre de 1754
Londres, Bandera de Inglaterra Inglaterra
OcupaciónMatemático

Abraham de Moivre. Matemático británico de origen francés que fundó la trigonometría analítica y concibió el teorema que lleva su nombre.

Síntesis biográfica

Estudios

Aunque su padre era cirujano, su familia no era rica. De religión protestante, sin embargo sus primeras enseñanzas las tuvo en una escuela católica, en Vitry. Después, con 11 años fue a una academia protestante en Sedan, donde pasó 4 años aprendiendo griego.

Esta academia fue suprimida por el gobierno francés en 1682. De Moivre fue entonces a Saumur donde estudió lógica hasta 1684. En esta época estudió matemáticas por su cuenta, leyéndose un Tratado de Huygens. Al mudarse sus padres a París, Abraham pasa al Collège de Harcourt, donde estudia física y matemáticas.

Después de que el Edicto de Nantes fue revocado en 1685 por el rey Luis XIV para favorecer en Francia los privilegios del clero católico sobre los protestantes (hugonotes), la familia Moivre tuvo que abandonar Francia y se trasladó a vivir a Inglaterra para evitar la persecución religiosa.

Aportes

Realizó importantes aportes teóricos en el campo de las series numéricas, en el cálculo infinitesimal, en las propuestas de nuevos métodos para resolver ecuaciones de varios grados, en la trigonometría y en el estudio de los factoriales y los logaritmos.

De Moivre es recordado por la fórmula que ya usó en 1707

   (cos x + i sen x)n = cos(nx) + isen(nx)

La cual introdujo la trigonometría en el análisis, y que fue importante en el desarrollo de la aritmética de los números complejos.

En su obra The doctrine of chances, editada en Londres en 1718, analizó a profundidad el modelo ideal de la probabilidad frecuentista y equiprobable desarrollado según los trabajos de Pascal, Fermat y Huygens. En ella expone la probabilidad binominal o distribución gaussiana, el concepto de independencia estadística y el uso de técnicas analíticas en el estudio de la probabilidad.

En su trabajo, Miscellanea Analytica de 1730, ya aparece la llamada erróneamente fórmula de Stirling, que usó posteriormente en 1733 para derivar la curva normal como una aproximación a la distribución binomial.

También, en su obra Miscellanea Analytica, publicada en Londres en 1730, aparece por vez primera la solución general de una ecuación lineal en recurrecia. Obteniendo mucho antes que Binet, la hoy errónamente llamada fórmula de Binet para obtener el término n-ésimo de la sucesión de Fibonacci.

Muerte

Muere el 27 de noviembre de 1754 en Londres a los 87 años de edad.

Fuentes

Enlaces externos