Física

Física
Información sobre la plantilla
Física1.jpg
Concepto:La Física es una ciencia natural que estudia las propiedades del espacio, el tiempo, la materia y la energía, así como sus interacciones fundamentales

Física. Es la Ciencia natural que estudia las propiedades del espacio, el tiempo, la materia y la energía, así como sus interacciones. Es una de las más antiguas disciplinas académicas, tal vez la más antigua a través de la inclusión de la astronomía. En los últimos dos milenios, la física había sido considerada sinónimo de la filosofía, la química, y ciertas ramas de la matemática y la biología, pero durante la Revolución Científica en el Siglo XVI surgió para convertirse en una ciencia moderna, única por derecho propio. Sin embargo, en algunas esferas como la física matemática y la química cuántica, los límites de la física siguen siendo difíciles de distinguir.

Historia

Se conoce que la mayoría de las civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno; miraban las estrellas y pensaban cómo ellas podían regir su mundo. Esto llevó a muchas interpretaciones de carácter más filosófico que físico; no en vano en esos momentos a la física se le llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primigenio de la física, como Aristóteles, Tales de Mileto o Demócrito, por ser los primeros en tratar de buscar algún tipo de explicación a los fenómenos que les rodeaban.[1]

A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas, éstas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la Iglesia Católica de varios de sus preceptos, como la teoría geocéntrica o las tesis de Aristóteles.

Esta etapa, denominada oscurantismo en la ciencia, termina cuando Nicolás Copérnico, considerado padre de la astronomía moderna, en 1543 recibe la primera copia de su De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia, empleando por primera vez experimentos para comprobar sus aseveraciones: Galileo Galilei. Con la invención del Telescopio y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se les unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, Blaise Pascal y Christian Huygens.[2]

Isaac Newton

Posteriormente, en el Siglo XVII, un científico inglés reúne las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la Tierra en lo que él llamó gravedad. En 1687, Sir Isaac Newton, en su obra Philosophiae Naturalis Principia Mathematica, formuló los tres principios del movimiento y una cuarta Ley de la gravitación universal, que transformaron por completo el mundo físico; todos los fenómenos podían ser vistos de una manera mecánica.[3]

Es en el Siglo XIX donde se producen avances fundamentales en la electricidad y el magnetismo, principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm, que culminaron en el trabajo de James Clerk Maxwell de 1855, que logró la unificación de ambas ramas en el llamado electromagnetismo. Además, se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.[4]

Durante el Siglo XX, la Física se desarrolló plenamente. En 1904 se propuso el primer modelo del átomo. En 1905, Einstein formuló la Teoría especial de la Relatividad, la cual coincide con las Leyes de Newton cuando los fenómenos se desarrollan a velocidades pequeñas comparadas con la velocidad de la luz. En 1915 extendió la teoría especial de la Relatividad, formulando la Teoría general de la relatividad, la cual sustituye a la Ley de gravitación de Newton y la comprende en los casos de masas pequeñas.

Albert Einstein

Max Planck, Albert Einstein, Niels Bohr y otros, desarrollaron la Teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada.[5]

Posteriormente se formuló la Teoría cuántica de campos, para extender la mecánica cuántica de manera consistente con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de los 40, gracias al trabajo de Richard Feynman, Julian Schwinger, Tomonaga y Freeman Dyson, quienes formularon la teoría de la electrodinámica cuántica. Asimismo, esta teoría suministró las bases para el desarrollo de la física de partículas. En 1954, Chen Ning Yang y Robert L. Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top.[5]

Los intentos de unificar las cuatro interacciones fundamentales han llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Es por eso que nuevas teorías han visto la luz, como la supergravedad o la Teoría de cuerdas, que es donde se centran las investigaciones a inicios del Siglo XXI.

Otros en la historia

Áreas de investigación

Física teórica

La cultura de la investigación en Física en los últimos tiempos se ha especializado tanto que ha dado lugar a una separación de los físicos que se dedican a la teoría y otros que se dedican a los experimentos. Los teóricos trabajan en la búsqueda de modelos matemáticos que expliquen los resultados experimentales y que ayuden a predecir resultados futuros. Así pues, teoría y experimentos están relacionados íntimamente. El progreso en física a menudo ocurre cuando un experimento encuentra un resultado que no se puede explicar con las teorías actuales, por lo que hay que buscar un nuevo enfoque conceptual para resolver el problema.

La física teórica está muy relacionada con las Matemáticas. Esta suministra el lenguaje usado en el desarrollo de las teorías físicas. Los teóricos confían en el cálculo diferencial e integral, el análisis numérico y en simulaciones por ordenador para validar y probar sus modelos físicos. Los campos de Física computacional y Matemática son áreas de investigación activas.

Los teóricos pueden concebir conceptos tales como Universos paralelos, espacios multidimensionales o minúsculas cuerdas que vibran, y a partir de ahí, realizar hipótesis físicas.

(Artículo completo: Física Teórica.)

Física estadística

Parte de la Física que estudia las propiedades de las colectividades de partículas (desde las partículas «elementales» hasta las galaxias). Ya en la física estadística clásica, que se ocupa de partículas subordinadas a las leyes de la mecánica clásica, se descubre la imposibilidad de reducir las propiedades de un todo (colectividad de partículas) a las propiedades de sus partes (Parte y todo). Las conclusiones de la física estadística han puesto de relieve la limitación de la elucidación metafísica de la causalidad, del denominado determinismo laplaciano. La física estadística actual se halla indisolublemente ligada a la teoría cuántica, se ocupa de partículas que se subordinan a las leyes cuánticas. Sin embargo, en determinadas condiciones, la física estadística moderna se transforma en clásica (Principio de correspondencia).

Física de la materia condensada

Se ocupa de las propiedades físicas macroscópicas de la materia, tales como la densidad, la temperatura, la dureza, o el color de un material. Los materiales consisten en un gran número de átomos o moléculas que interactúan entre ellos, por lo que están "condensados", a diferencia de estar libres sin interactuar. La física de la materia condensada busca hacer relaciones entre las propiedades macroscópicas, que se pueden medir, y el comportamiento de sus constituyentes a nivel microscópico o atómico y así comprender mejor las propiedades de los materiales.

(Ver artículo completo: Física de sólidos.)

Física atómica y molecular

La física atómica y molecular se centran en el estudio de las interacciones materia-materia y luz-materia en la escala de átomos individuales o estructuras que contienen unos pocos átomos. Ambas áreas se agrupan debido a su interrelación, la similitud de los métodos utilizados, así como el carácter común de las escalas de energía relevantes a sus investigaciones. A su vez, ambas incluyen tratamientos tanto clásicos como cuánticos, ya que pueden tratar sus problemas desde puntos de vista microscópicos y macroscópicos.

La investigación actual en física atómica se centra en actividades tales como el enfriamiento y captura de átomos e iones, lo cual es interesante para eliminar "ruido" en las medidas y evitar imprecisiones a la hora de realizar otros experimentos o medidas (por ejemplo, en los Relojes atómicos), aumentar la precisión de las mediciones de constantes físicas fundamentales, lo cual ayuda a validar otras teorías como la relatividad o el modelo estándar, medir los efectos de correlación electrónica en la estructura y dinámica atómica, y la medida y comprensión del comportamiento colectivo de los átomos de gases que interactúan débilmente (por ejemplo, en un condensado de Bose-Einstein de pocos átomos).

(Artículos completos: Física atómica y Física molecular.)

Física de partículas o de altas energías

La física de partículas es la rama de la Física que estudia los componentes elementales de la materia y las interacciones entre ellos como si éstas fueran partículas. Es llamada también física de altas energías, pues muchas de las partículas elementales no se encuentran en la naturaleza y es necesario producirlas en colisiones de alta energía entre otras partículas, como se hace en los Aceleradores de partículas. Los principales centros de estudio sobre partículas son el Laboratorio Nacional Fermi o Fermilab, en Estados Unidos, y el Centro Europeo para la Investigación Nuclear o CERN, en la frontera entre Suiza y Francia. En estos laboratorios lo que se logra es obtener energías similares a las que se cree existieron en el Big Bang, y así se intenta tener cada vez más pruebas del origen del universo[6]

(Artículo completo: Física de Partículas.)

Astrofísica

El Universo

Junto a la Astronomía son ciencias que aplican las teorías y métodos de otras ramas de la Física al estudio de los objetos que componen nuestro variado universo, tales como estrellas, planetas, galaxias y agujeros negros. La astronomía se centra en la comprensión de los movimientos de los objetos, mientras que, grosso modo, la astrofísica busca explicar su origen, su evolución y su comportamiento. Actualmente los términos astrofísica y astronomía se suelen usar indistintamente para referirse al estudio del universo.

(Ver artículo completo: Astrofísica.)

Biofísica

Es un área interdisciplinaria que estudia la biología aplicando los principios generales de la física. Al aplicar el carácter probabilístico de la mecánica cuántica a sistemas biológicos, obtenemos métodos puramente físicos para la explicación de propiedades biológicas. Se puede decir que el intercambio de conocimientos es únicamente en dirección a la biología, ya que ésta se ha ido enriqueciendo de los conceptos físicos y no viceversa.[7]

Esta área está en constante crecimiento. Se estima que durante los inicios del siglo XXI cada vez la confluencia de físicos, biólogos y químicos a los mismos laboratorios se incrementará. Los estudios en neurociencia, por ejemplo, han aumentado y cada vez han tenido mayores frutos desde que se comenzó a implementar las leyes del electromagnetismo, la óptica y la física molecular al estudio de las neuronas.[8]

(Ver artículo completo: Biofísica.)

Resumen de las disciplinas físicas

Clasificación de la física con respecto a teorías:

Referencias

  1. Rolando Delgado Castillo, Francisco A. Ruiz Martínez (Universidad de Cienfuegos). «De Aristóteles a Ptolomeo». Consultado el 29/01/2008.
  2. Rolando Delgado Castillo, Francisco A. Ruiz Martínez (Universidad de Cienfuegos). «Ideas físicas en el Medioevo». Consultado el 29/01/2008.
  3. Michael Fowler (1995). «Isaac Newton» (en inglés). Consultado el 31/01/2008.
  4. Rolando Delgado Castillo, Francisco A. Ruiz Martínez (Universidad de Cienfuegos). «Nuevo Paradigma electromagnético en el siglo XIX». Consultado el 01/02/2008.
  5. 5,0 5,1 Rolando Delgado Castillo, Francisco A. Ruiz Martínez (Universidad de Cienfuegos). «La física del siglo XX». Consultado el 01/02/2008.
  6. Ma Jose Guerrero (Instituto de Física Teórica UAM). «Partículas elementales». Consultado el 03/02/2008.
  7. «Biofísica». Consultado el 05/02/2008.
  8. Néstor Parga (Departamento de Física Teórica UAM). «Biofísica y el cerebro». Consultado el 05/02/2008..

Véase también

Fuentes